Donor simvastatin treatment abolishes rat cardiac allograft ischemia/reperfusion injury and chronic rejection through microvascular protection.
نویسندگان
چکیده
BACKGROUND Ischemia/reperfusion injury may have deleterious short- and long-term consequences for cardiac allografts. The underlying mechanisms involve microvascular dysfunction that may culminate in primary graft failure or untreatable chronic rejection. METHODS AND RESULTS Here, we report that rat cardiac allograft ischemia/reperfusion injury resulted in profound microvascular dysfunction that was prevented by donor treatment with peroral single-dose simvastatin, a 3-hydroxy-3-methylglutaryl coenzyme A reductase and Rho GTPase inhibitor, 2 hours before graft procurement. During allograft preservation, donor simvastatin treatment inhibited microvascular endothelial cell and pericyte RhoA/Rho-associated protein kinase activation and endothelial cell-endothelial cell gap formation; decreased intragraft mRNA levels of hypoxia-inducible factor-1α, inducible nitric oxide synthase, and endothelin-1; and increased heme oxygenase-1. Donor, but not recipient, simvastatin treatment prevented ischemia/reperfusion injury-induced vascular leakage, leukocyte infiltration, the no-reflow phenomenon, and myocardial injury. The beneficial effects of simvastatin on vascular stability and the no-reflow phenomenon were abolished by concomitant nitric oxide synthase inhibition with N-nitro-l-arginine methyl ester and RhoA activation by geranylgeranyl pyrophosphate supplementation, respectively. In the chronic rejection model, donor simvastatin treatment inhibited cardiac allograft inflammation, transforming growth factor-β1 signaling, and myocardial fibrosis. In vitro, simvastatin inhibited transforming growth factor-β1-induced microvascular endothelial-to-mesenchymal transition. CONCLUSIONS Our results demonstrate that donor simvastatin treatment prevents microvascular endothelial cell and pericyte dysfunction, ischemia/reperfusion injury, and chronic rejection and suggest a novel, clinically feasible strategy to protect cardiac allografts.
منابع مشابه
Supplemental Material Donor simvastatin treatment abolishes rat cardiac allograft ischemia-reperfusion injury and chronic rejection through microvascular protection
متن کامل
Transplantation Donor Simvastatin Treatment Abolishes Rat Cardiac Allograft Ischemia/Reperfusion Injury and Chronic Rejection Through Microvascular Protection
Background—Ischemia/reperfusion injury may have deleterious short-and long-term consequences for cardiac allografts. The underlying mechanisms involve microvascular dysfunction that may culminate in primary graft failure or untreatable chronic rejection. Methods and Results—Here, we report that rat cardiac allograft ischemia/reperfusion injury resulted in profound microvascular dysfunction that...
متن کاملCardiac Allograft Vasculopathy: Past, Present and Future!
Cardiac Allograft Vasculopathy (CAV) is a serious complication after heart transplantation in adults as well as children and once developed irreversibly compromises the outcome of the recipients. Human leukocyte antigen mismatches, number and duration of rejection episodes, type of immunosuppression and presence of antibody -mediated rejection are among the most relevant immunological risk fact...
متن کاملCardiac allograft vasculopathy: Microvascular arteriolar capillaries ('capioles") and survival.
Cardiac allograft vasculopathy (CAV) is a serious complication of heart transplantation in adults and children. Risk factors include human leukocyte antigen mismatches, number and duration of rejection episodes, type of immunosuppression, antibody-mediated rejection, hypertension, hyperlipidemia, obesity, smoking, diabetes, cytomegalovirus infection, mode of donor brain death, donor age and isc...
متن کاملThe role of hormones in renal disease and ischemia-reperfusion injury
The patients with renal diseases, especially end-stage renal disease (ESRD), are at high risk of developing cardiovascular disturbances. Some hormones such as brain natriuretic peptide appear to be important serum biomarkers in predicting cardiac death in ESRD patients. Renal diseases cause inflammation, anemia, uremic toxins, fluid overload, and electrolyte disturbance. Kidney transplantation ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation
دوره 124 10 شماره
صفحات -
تاریخ انتشار 2011